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Abstract
Digital learning games are designed to foster both student learning and enjoyment.
Given this goal, an interesting research topic is whether game mechanics that promote
learning and those that promote enjoyment have different effects on students’ experi-
ence and learning performance. We explored these questions inDecimal Point, a digital
learning game that teaches decimal numbers and operations to 5th and 6th graders,
through a classroom study with 159 students and two versions of the game. One
version encouraged playing and learning through an open learner model (OLM, N =
55), while one encouraged playing for enjoyment through an analogous open enjoy-
ment model (OEM, N = 54). We compared these versions to a control version that is
neutral with respect to learning and enjoyment (N = 50). While students learned in all
three conditions, our results indicated no significant condition differences in learning
outcomes, enjoyment, or engagement. However, the learning-oriented group engaged
more in re-practicing, while the enjoyment-oriented group demonstrated more explo-
ration of different mini-games. Further analyses of students’ interactions with the open
learner and enjoyment models revealed that students who followed the learner model
demonstrated better in-game learning and test performance, while following the enjoy-
ment model did not impact learning outcomes. These findings indicate that emphasiz-
ing learning or enjoyment can lead to distinctive game play behaviors, and that open
learner models can be helpful in a learning game context. In turn, our analyses have led
to preliminary ideas about how to use AI to provide recommendations that are more
aligned with students’ dynamic learning and enjoyment states and preferences.

Keywords Digital learning game . Decimal numbers . Mediation analysis . Student
modeling . Open learner model . Enjoyment

International Journal of Artificial Intelligence in Education
https://doi.org/10.1007/s40593-021-00250-6

An earlier version of this study was presented at the 21st International Conference on Artificial Intelligence in
Education (AIED 2020) and published in Hou et al. (2020). In this work, we conduct additional analyses to
investigate how students referred to and made gameplay choices based on the provided dashboards, as well as
the impact of these choices.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40593-021-00250-6&domain=pdf


Introduction

Recent advances in artificial intelligence (AI) in education have enabled many kinds of
adaptive learning support in instructional platforms, ranging from individualized prob-
lem sequencing (Corbett & Anderson, 1994) to conversational agents (Lin et al., 2020).
At the same time, there is active research on opening up the underlying models that
guide these adaptivity features to the learners, in an effort to connect with them and
promote system transparency. Such efforts have resulted in the development of open
learner models (OLM - Bull, 2020; Bull & Kay, 2010), which are often accompanied
by recommendation features that suggest the optimal learning pathways based on the
learners’ parameters (Dascalu et al., 2016). The use of these models has led to improved
student learning in various domains and systems (Bodily & Verbert, 2017).

On the other hand, many of the current learner models and recommender systems
are based on metrics of students’ learning performance, such as their skill masteries and
self-regulation (Hummel et al., 2007; Papamitsiou et al., 2018; Xie et al., 2019). It is
less clear if grounding the adaptivity and recommendations in a different construct,
such as affect or engagement, would result in better learning. This question is especially
relevant in the area of digital learning games, which typically aim to promote both
learning and enjoyment. While some studies have shown that game enjoyment is
positively correlated with learning outcomes (Anderman & Dawson, 2011; Fu et al.,
2009; Liu et al., 2011), others instead reported a trade-off, where games led to more
enjoyment but less learning than traditional approaches (Greipl et al., 2018; Pittman,
2013; Plass et al., 2013).

Our research aims to elucidate this relationship between learning and enjoyment, by
exploring and comparing the effects of recommender systems that optimize for each
construct. In particular, we made use of adaptive dashboard technologies that capture
data about students’ learning or enjoyment and present this information back to the
students, along with recommendations on how to maximize either factor. While data-
driven adaptivity has been implemented in learning games in many forms, such as
content generation (Hooshyar et al., 2018) and dynamic difficulty adjustment
(Sampayo-Vargas et al., 2013), we chose this dashboard approach for several reasons.
First, we would like to leverage the advantages of a transparent student assessment
model, which has been shown to improve student engagement (Sarkar & Cooper,
2018). Second, the benefits of a learning-oriented dashboard have been validated in
numerous studies on open learner models (see a recent review by Bodily et al., 2018),
while the use of an enjoyment-oriented dashboard is a novel idea that we would like to
explore. Finally, the use of suggestive, but not prescriptive, dashboard recommenda-
tions would allow us to examine when and how students made use of these recom-
mendations, in order to better understand the effects of learning- and enjoyment-
oriented dashboard design.

We created our study in the context of Decimal Point, a game that supports middle
school students in learning about decimal numbers and their operations (McLaren et al.,
2017). In Decimal Point, students can select from twenty-four mini-games to practice
their decimal skills. Each mini-game is essentially one of five “game types,” each
targeting a different decimal operation. Our study of the game compared the learning-
and enjoyment-oriented features through three conditions. The Learning-oriented Con-
dition (LC) displays the student’s current skill level across different decimal skills,
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through an open learner model, and recommends more playing of the mini-games they
are weakest at. The Enjoyment-oriented Condition (EC) displays the student’s current
enjoyment levels, through an analogous open enjoyment model, and recommends more
playing of the mini-games they enjoy the most. Finally, the Control Condition (CC)
does not show any learning- or enjoyment-related information. In this setting, our
research questions are as follows:

RQ1: Is there a difference in learning outcomes, self-reported enjoyment, or game
play behavior between students in the three conditions?
RQ2: In the Learning-oriented Condition, how is following the recommendation of
the open learner model associated with learning outcomes and enjoyment?
RQ3: In the Enjoyment-oriented Condition, how is following the open enjoyment
model associated with learning outcomes and enjoyment?

Through investigating these research questions, our work makes three contributions to
the digital learning game and AI in education literature. First, we show that the
learning- and enjoyment-oriented condition designs can lead to distinct game play
patterns that have different implications for learning. Second, we present an in-depth
analysis of the integration of an open learner model, as well as its analogous open
enjoyment model, in a digital learning game context. Third, we derive general insights
into the role of human-AI interaction in adaptive learning game features, by examining
how students make use of and react to the learning- and enjoyment-oriented
recommendations.

Background

AI-Based Adaptive Learner Support

The ability to provide adaptive support that caters to individual learner differences is
one of the key characteristics of intelligent learning technologies (Koedinger et al.,
2013). Based on a review by Aleven et al. (2016), modern learning systems can adapt
to many psychological dimensions of the learner (e.g., knowledge, motivation, and self-
regulation) at different time scales (during a problem-solving task, between tasks, or
between iterations of the system). This wide range of adaptivity is enabled by a rich
body of AI methodologies, ranging from traditional cognitive models (e.g., model
tracing, example tracing, constraint-based tutoring) to data-driven machine learning
techniques (e.g., Bayesian network, reinforcement learning, deep learning; see reviews
by Aleven et al., 2016; Brusilovsky, 2001; Vandewaetere & Clarebout, 2014;
VanLehn, 2016).

Adaptivity is also a popular feature of digital games, and often comes in the form of
dynamic difficulty adjustment (Ang & Mitchell, 2019; Baldwin et al., 2016; Frommel
et al., 2018; Zohaib, 2018), where the game attempts to match its level of difficulty with
the player skill. The primary motivation of this feature is that players would be in their
most engaged state, often referred to as flow, when the game challenges are closely
aligned with their skills (Csikszentmihalyi, 1990); otherwise, players would feel bored
if the game was too easy, or frustrated if the game was too difficult. While this focus on
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player engagement is different from the focus of learning systems, which aims to
promote student knowledge and learning, there are many common approaches to
implementing adaptivity in these two platforms, for instance with probabilistic methods
(Bunian et al., 2018), reinforcement learning (Hagelback & Johansson, 2009), and
neural networks (Li et al., 2010).

At the intersection of learning systems and digital games, digital learning games can
benefit from the many advances in learner/player adaptive support in both areas. For
example, in a physical education game, Xu et al. (2019) built algorithms to help the
system select suitable training material according to students’ real-time performance.
Similarly, in Trento Play&Go, a gamified urban mobility system, Khoshkangini et al.
(2017) constructed a system to automatically generate and recommend personalized
challenges tailored to the students’ preferences and history. As another example, in a
mathematics game for 3rd graders, ST Math, Peddycord-Liu et al. (2017) used linear
regression to uncover the predictive relationships between different math objectives,
which led to a method for recommending the next math objective for students to play
based on their current progress.

However, much of this modeling and adaptation process is performed behind the
scenes, inaccessible to the students themselves. At the same time, research across
different types of systems has uncovered the benefits of opening up the user assessment
model, resulting in increased system transparency and user engagement (Bodily &
Verbert, 2017; Bull & Kay, 2010; Malacria et al., 2013; Sarkar & Cooper, 2018).
Therefore, in our work, we would like to experiment with a more transparent form of
adaptivity, through a personalized dashboard that displays relevant assessment infor-
mation to the students, in addition to providing game play recommendations.

Open Learner Models

The type of transparent dashboard we plan to incorporate has also been used in many
educational systems, where it is often referred to as an open learner model (OLM), to
display the internal learner model to students, with the goal of promoting their meta-
cognitive abilities (Bodily et al., 2018; Bull, 2020). Here the key assumption is that
students would use the open learner model to reflect on their learning progress and
make decisions accordingly, leading to better self-regulation and learning outcomes.
This proposition has been supported by a large number of empirical studies (e.g.,
Bodily et al., 2018; Bull et al., 2016; Jivet et al., 2018; Long & Aleven, 2013).

While OLMs are popular in intelligent tutoring systems and adaptive learning
platforms, they have not seen wide adoption in learning games (e.g., Jasin et al.,
2017). One of the earliest research in this area was conducted by Chen et al. (2007),
who built a learning game, called My-Pet-Our-Pet, for Chinese idioms. The game’s
OLM is represented by a pet companion whose attributes are based on several learning
dimensions. Results from this study indicated that the game materials alone did not lead
to significant learning improvements, while the game materials in combination with
OLM did. Follow-up research by Chen et al. (2011) further refined the in-game OLM,
changing its representation from a pet companion to the student avatar, in order to help
students understand their learning progress and enhance their feelings of self-aware-
ness. As another example, Leonardou et al. (2019) combined an educational game for
learning multiplication tables with OLM elements, and found that primary school
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students had positive reactions towards the OLM approach in games. However, these
prior studies did not closely examine students’ interactions with the OLM to see how
frequently they consulted the model, and how this behavior impacted their learning.
Addressing this area is one of the primary goals of our work.

A notable example of using OLMs to support both learning and self-regulation is
Lynnette (Long & Aleven, 2016), an algebra tutor with gameful design elements. The
tutor presents a dashboard that shows how well the student did on each problem type,
while also offering immediate feedback on problem selections; students would receive
positive feedback when selecting a problem type they needed to improve on, and
negative feedback for selecting a type they have already mastered. Results from a
randomized experiment by Long and Aleven (2016) showed that students learned
better when they were allowed to select which problem types to do and received
feedback on their selections, compared to when the system had full control over
problem selection. As we will later discuss, the experimental design of Lynnette has
key similarities with the Decimal Point study on which we base our analysis.

Learning and Enjoyment in Digital Learning Games

Digital learning games are instructional tools that aim to promote student learning
through engaging game environments (Dondlinger, 2007; Gee, 2003; Young et al.,
2012). A special characteristic of this type of environment is the focus on both learning
and enjoyment. Learning is the primary objective and is fostered through evidence-
based intervention techniques such as immediate feedback (Burgers et al., 2015) and
self-reflection prompts (Moreno & Mayer, 2004). In addition, games improve students’
motivation and engagement primarily by fostering enjoyment (Annetta et al., 2009;
Moreno & Mayer, 2007; Tobias & Fletcher, 2007), and several studies have shown a
positive correlation between enjoyment and learning outcomes (Anderman & Dawson,
2011; Fu et al., 2009; Liu et al., 2011). Engagement is often hypothesized to be one of
the mechanisms through which digital learning games support learning (e.g., McLaren
et al., 2017), and while this pathway has rarely been experimentally tested, one recent
study found that students’ disengaged behaviors mediated learning benefits (Richey
et al., under review). This study was with our learning game, Decimal Point, compared
to a non-game control (i.e., a computer tutor with the same math content, but presented
in a standard, non-game manner).

On the other hand, there is a well-known challenge in maintaining the balance
between the learning and enjoyment aspects of digital learning games (Kickmeier-Rust
& Albert, 2010; Shute et al., 2019; Van Eck, 2006). According to Charsky and Ressler
(2011), students who played a learning game enhanced with expert-generated concept
maps reported lower motivation than their baseline motivation for regular classroom
studies, because the concept maps focused students on the difficulty of learning and
extrinsic reward in game playing, thereby negating the game’s fun factor. In another
study, Greipl et al. (2018) reported that, when learning basic math skills from a game,
students reported more fun but made more estimation errors than when learning with
paper and pencil; the authors also framed the connection between learning and enjoy-
ment as a trade-off, where efforts to improve one factor may be detrimental to the other,
rather than being synergistic and supportive.
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While prior research has reported conflicting results regarding the relationship
between learning and enjoyment, these studies also differ widely in their game design
and instructional domain. To further elucidate this issue, we believe it would be
enlightening to compare two different versions of the same learning game, where one
version focuses on the learning aspect of the game and the other on the enjoyment
aspect. To our knowledge, only a handful of prior studies in this direction have been
conducted. For example, a study by Habgood and Ainsworth (2011) compared three
variations of a math game: an intrinsic version with math content integrated into game
elements, an extrinsic version which inserted math problems with symbolic represen-
tations into the game environment, and a control version where the learning materials
have no connection with the game mechanics. Their results indicated that students
learned more from the intrinsic version of the game under fixed time limits. As another
example, Erhel and Jamet (2013) manipulated how undergraduate students perceived
the same multimedia environment as either a learning module or a game. Based on their
findings, the learning module group achieved deeper learning while reporting the same
level of motivation as the game group, but performed worse than the game group when
instructional feedback was added to both conditions, suggesting that a game environ-
ment can be helpful if it provides sufficient instructional support. Another study done
by Wechselberger (2013) adopted a similar strategy with high school students and
found that enjoyment is not affected by playful or serious framing.

Building on prior research, our goal was to experiment with a contrast between
learning and enjoyment, one that relies on guiding students towards learning- or
enjoyment-oriented goals. This work extends prior research on open learner models
in intelligent tutoring systems by seeking to replicate the few prior studies that have
implemented open learner models in digital learning games. Additionally, we have
experimentally tested the effects of promoting enjoyment, a key hypothesized mecha-
nism for supporting learning in digital learning games that has, in practice, produced
mixed results when it has been manipulated through a game’s content representation of
students’ prior perspectives. There is reason to expect both the open learner model and
the open enjoyment model would support learning, but through different mechanisms
(i.e., the open learner model through targeted practice and the open enjoyment model
through increased enjoyment and engagement).

Decimal Point

Decimal Point is a 2D single-player web game that can be played in a browser on a PC
or tablet. The game features a fantasy world where the players, who are middle school
students, travel through the Decimal Point Amusement Park to help alien friends learn
about decimal numbers and their operations. As shown in Fig. 1, the game map consists
of eight theme areas (e.g., Haunted House, Wild West, Space Adventure), each with its
own leitmotif and mini-games (e.g., Enter If You Dare in the Haunted House and Lasso
the Bronco in the Wild West). While the game map is designed to facilitate an
immersive experience, game play occurs inside the mini-games, where students com-
plete a variety of playful activities (e.g., entering a haunted house, shooting western
targets, launching a spaceship) that each connect with a type of decimal exercise. Based
on the nature of its activities, each mini-game is characterized by one of the five game
types in Table 1. Each game type was designed to target one of four established
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decimal misconceptions: (1) longer decimals are larger, (2) shorter decimals are larger,
(3) the integer and decimal portions are independent, and (4) decimals smaller than 1.0
are negative (McLaren et al., 2017).

As an example, in the mini-gameWhack-A-Gopher (Fig. 1), students have to hit the
four gophers in the correct order based on their associated number labels. These
number labels were set up to target the misconception that decimals smaller than 1.0
are negative (Isotani et al., 2010; Stacey et al., 2001). They also need to be quick in
thinking and acting, as the gophers pop up and retreat at random times. Once the four
gophers have been hit, students receive immediate feedback about the correctness of
their ordering, and can rearrange the number labels if they are incorrect. After success-
fully finishing this activity, students are prompted to self-explain their answer by
selecting from a multiple-choice list of possible explanations. This stage is based on
prior research that has demonstrated the learning benefits of self-explanations (Chi
et al., 1989, 1994), including in digital learning games (Johnson & Mayer, 2010).
Every mini-game has a similar outline of problem-solving embedded in game activities,
followed by self-explanation. Students don’t face any penalty on incorrect responses
and can resubmit answers as many times as needed; however, they are not allowed to
move forward without correctly solving all the problems in the mini-game they chose.
More details about the instructional content of the mini-game problems can be found in
McLaren et al. (2017).

Fig. 1 The game map where students can select among 24 mini-games to play (left), and an example mini-
game, Whack-A-Gopher, in the Sorting type and Old Time Amusement Park theme (right)

Table 1 The list of game types and their game activities in Decimal Point

Game type Activity

Number
Line

Locate the position of a decimal number on the number line

Addition Add two decimal numbers by entering the carry digits and the sum

Sequence Fill in the next two numbers of a sequence of decimal numbers

Bucket Compare given decimal numbers to a threshold number and place each number in a “less than”
or “greater than” bucket.

Sorting Sort a list of decimal numbers in ascending or descending order
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An initial study of Decimal Point, where students had to play all mini-games in a
canonical order, showed that the game yielded more learning and enjoyment than a
conventional tutor with the same instructional content (McLaren et al., 2017). Subse-
quent studies have experimented with providing agency, i.e., the freedom to select
which mini-games to play and when to stop (Harpstead et al., 2019; Nguyen et al.,
2018), to students. These studies revealed no differences in test scores or enjoyment
between students who were and were not offered agency, but Harpstead et al. (2019)
found that students in the former group had the same learning gains while completing
fewer mini-games than the latter, suggesting that Decimal Point, in its canonical form,
may contain more learning content than it requires and that students are able to self-
regulate successfully in determining when to quit playing. Our study builds on these
prior studies by retaining the agency feature while also providing students with
learning- or enjoyment-oriented recommendations to aid them in decision making
throughout their game play.

Context and Methods

In order to compare and evaluate the effectiveness of the learning- and enjoyment-
oriented game features in Decimal Point, we conducted a study with 5th and 6th grade
students in two public schools in a mid-sized U.S. city. 196 students originally
participated in the study, which was conducted during students’ regular class times
and lasted six days. The materials included a pretest, game play, evaluation question-
naire and posttest during the first five days, followed by a delayed posttest one week
later. Participants completed the pretest and demographic questionnaire on the first day,
played the game in three class days, then completed an evaluation survey and posttest
right after finishing the game, as well as a delayed posttest one week later. They had
one hour of class time per day to go through the above activities, but typically took
fewer than two hours to finish the game (M = 1.61 h, SD = 0.57). After the study, 35
students were removed from our analyses due to not finishing all of the materials.
Using the outlier criteria from a prior study in Decimal Point (Nguyen et al., 2018), we
excluded two students whose gain scores from pretest to posttest were 2.5 standard
deviations away from the mean (M = 5.27, SD = 6.00). Thus, our final sample included
159 students (82 males, 77 females), whose age range was from 10 to 12 years old
(M = 10.94, SD = 0.64). The full log data from the study is archived in the DataShop
repository (Koedinger et al., 2010), in dataset number 3086.1

Intervention Design

Each student was randomly assigned to one of three conditions: Learning-oriented
Condition (LC; N = 55), Enjoyment-oriented Condition (EC; N = 54), or Control Con-
dition (CC; N = 50). Students could select the mini-games to play in any order, where a
mini-game round is defined as a complete play through the decimal problems and self-
explanation question in that mini-game. In both the LC and EC settings, students could
choose to stop playing any time after completing at least 24 rounds. In the CC setting,

1 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=3086
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which was equivalent to the High Agency condition in Nguyen et al. (2018) and
Harpstead et al. (2019), students had the option to play another round of each after
finishing the first two rounds of all 24 mini-games. Additionally, each condition
featured a different dashboard (see Fig. 2) attached to the main game map in Fig. 1.
After finishing a mini-game round, students would be taken back to the game map,
where they could make their next mini-game selection from the updated dashboard.

The Learning-oriented Condition was designed to encourage students to play the
game types that they needed the most improvement on. After the student finished a
mini-game round and returned to the game map, the open learner model dashboard
(Fig. 2a) would display their updated mastery of each game type, based on Bayesian
Knowledge Tracing (BKT - Corbett & Anderson, 1994). BKT represents student
learning of a targeted skill by a Hidden Markov Model with two states: Mastered
and Unmastered. A standard BKT model has four parameters: (1) pinit: the probability
of starting at the Mastered state (i.e., knowing the skill before interacting with the
system), (2) ptransit: the probability of transitioning from Unmastered to Mastered, (3)
pslip: the probability of making an incorrect answer while being in the Mastered state
(i.e., slipping), and (4) pguess: the probability of making a correct answer while being in
the Unmastered state (i.e., making a lucky guess). The goal of BKT is to infer the value
of plearn, which denotes the probability of the student being in the Mastered state, from a
sequence of observations about their answer correctness (Yudelson et al., 2013). Based
on prior work, the BKT parameters in our study were initially set to pinit = 0.4, ptransit =
0.05, pslip = pguess = 0.299 (Baker, R. - personal correspondence).

Fig. 2 The dashboards shown along with the game map in the (a) Learning-oriented, (b) Enjoyment-oriented,
and (c) Control condition. Clicking on a game type revealed the mini-games in that game type, which could be
selected for playing. The game types in the Enjoyment-oriented Condition (b) were renamed in keeping with
maximizing enjoyment and to be more playful, e.g., Addition becameMad Adder. The equivalent game types
are next to one another in Figs. 2(a) and 2(b)
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In the Learning-oriented Condition, if a game type had not been played so far, it
would start at the initial mastery value of pinit = 0.4. If the mastery value plearn of any
game type changed after the most recent mini-game round, there would be a short
animation of the skill bar increasing or decreasing to draw the student’s attention to this
change. The game types were also ordered so that those at the top had the lowest
mastery value. In addition, the dashboard selected three mini-games from the two least-
mastered game types to recommend to the student. For example, in Fig. 2a, the first two
recommended mini-games (Night of the Zombies and Enter If You Dare) came from the
top game type (Number Line), and the third recommended mini-game (Ancient Temple)
came from the second top game type (Sequence); the selection of specific mini-games
within a game type was random. This recommendation was only displayed after a
student had played three mini-game rounds, when initial data about their learning
would be available. Students in this condition could either follow the recommendation
or make their own selection. To encourage interaction with the dashboard, mini-game
selection from the game map was not allowed.

The Enjoyment-oriented Condition was designed to encourage students to play the
game types for which they previously indicated their preference. After finishing a mini-
game round, each student was asked to rate their enjoyment of that mini-game, on a
scale from 1 (“not fun”) to 5 (“crazy fun”). The rating interface (Fig. 3) is based on the
prior work of Read and MacFarlane (2006) in which they designed a “fun-o-meter”
used to collect children’s ratings on playful activities. The open enjoyment model
dashboard then displayed the student’s enjoyment score of each game type, which was
the average of all their mini-game ratings in that type, rounded up to half a star (Fig.
2b). If the enjoyment score of any game type changed after the most recent mini-game
round, there would be a short animation of the stars being filled or emptied to draw the
student’s attention to this change. If a game type had not been rated yet, it would start at
the zero star position. The game types were also ordered so that those at the top had the
highest enjoyment score. Similar to the Learning-oriented Condition, two mini-games
in the top game type and one in the second top type were also recommended (chosen

Fig. 3 A screenshot of the fun-o-meter that asked students in the Enjoyment-oriented Condition to rate their
enjoyment of the most recent mini-game round
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randomly within type); students could follow the recommendation or make their own
selection from the dashboard, but not from the game map (which was done to be sure
students paid attention to the open enjoyment model dashboard).

The Control condition was equivalent to the High Agency condition in prior studies
by Nguyen et al. (2018) and Harpstead et al. (2019), where students played two rounds
of mini-game per selection (i.e., they played each selected mini-game twice, with
different content but the same mechanics). The dashboard listed the mini-games and
their corresponding skills, where the completed ones were highlighted in red (Fig. 2c).
However, in this condition, no information about the student’s learning or enjoyment
state was provided. After finishing the first two rounds of all 24 mini-games, students
had the option to play another round of each.

Assessment

In addition to gameplay, students were also asked to complete pre, post, and delayed
tests of their decimal knowledge as well as a questionnaire about their enjoyment of the
experience.

Pretest, Posttest, and Delayed Posttest. Each student received an online pretest
before game play on the first day, a posttest immediately after game play, and a delayed
posttest one week after the posttest. Each test consists of 43 questions. Most questions
were worth one point each, while some multi-part questions were worth several points,
for a total of 52 points per test. The questions were designed to probe for specific
decimal misconceptions and involved either one of the five decimal activities targeted
in Table 1 or conceptual questions (e.g., “Is a longer decimal number larger than a
shorter decimal number?”). Three test forms (A, B and C) that were isomorphic and
positionally counterbalanced across conditions were used. A series of one-way
ANOVAs showed no difference in terms of performance among the three versions of
the test at pretest, F(2, 156) = 0.480, p = .620, posttest, F(2, 156) = 1.496, p = .227, or
delayed posttest, F(2, 156) = 1.302, p = .275.

Questionnaires and Survey Immediately after finishing the game on the last day of
game play, students in all three conditions were asked to rate several statements about
their enjoyment of the experience on a Likert scale from 1 (“strongly disagree”) to 5
(“strongly agree”). These statements are based on existing measurement scales and
pertain to three enjoyment constructs: multidimensional engagement, game engage-
ment, and the enjoyment dimension of achievement emotions (Table 2). In the multi-
dimensional engagement construct, we excluded the behavioral/cognitive engagement
subscale from analysis, due to its low reliability, and only reported the results for
affective engagement. We then averaged the ratings for individual items in each
construct to produce a representative score for that construct. In addition, the ratings
for negative statements such as “I felt frustrated or annoyed” were reverse coded so
that, across all constructs, a higher score indicates more enjoyment. We refer to these
scores as post-game enjoyment scores, to distinguish them from the mini-game ratings
(Fig. 3), which were collected only in the Enjoyment-oriented Condition. After the
game, students were also asked to reflect on their game play behavior, e.g. “How many
mini-games did you play, and why did you play this number of mini-games?”
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Results

We first checked whether students learned by playing Decimal Point. A repeated-
measures ANOVA showed a significant difference for all students, in all conditions,
between pretest and posttest scores, F(1, 158) = 132.882, p < .001, as well as between
pretest and delayed posttest scores, F(1, 158) = 239.414, p < .001. In other words, in all
three conditions students’ performance improved after playing the game. Next, we
investigated our main research questions. Given that the conditions (CC, LC and EC)
were randomly assigned, we did not expect systematic differences on the pretest based
on condition; we used analyses of covariance (ANCOVA) to assess condition effects
on posttest and delayed posttest while controlling for individual variation in pretest.

Condition Effect on Learning and Enjoyment

RQ1: Is there a difference in learning outcomes, self-reported enjoyment, or game
play behavior between students in the three conditions?

Descriptive statistics about students’ test scores and post-game enjoyment ratings in
each condition are included in Table 3. From a one-way ANOVA, we observed no
significant differences across conditions in pretest scores, F(2, 156) = 1.915, p = .151.
With pretest score as a covariate, an ANCOVA showed no significant condition
differences in posttest scores, F(2, 155) = 0.201, p = .818, or delayed posttest scores,

Table 2 Post-intervention survey items

Construct (item count) Example statement Cronbach’s
ɑ

Affective engagement (3)
(Ben-Eliyahu et al., 2018)

I felt frustrated or annoyed. .78

Behavioral/cognitive engagement (3)
(Ben-Eliyahu et al., 2018)

I tried out my ideas to see what would
happen.

.54

Game engagement (5)
(Brockmyer et al., 2009)

I lost track of time. .74

Achievement emotion (6)
(Pekrun, 2005)

Reflecting on my progress in the game
made me happy.

.89

Table 3 Descriptive statistics of test performance and self-reported enjoyment scores by condition

Category CC EC LC

Pretest scores M (SD) 26.68 (8.89) 24.76 (9.55) 23.09 (9.65)

Posttest scores M (SD) 32.12 (8.01) 29.76 (10.25) 28.42 (11.31)

Delayed posttest scores M (SD) 32.84 (8.90) 31.74 (10.12) 30.05 (10.06)

Achievement emotion M (SD) 3.46 (1.02) 3.49 (0.88) 3.55 (0.94)

Game engagement M (SD) 3.00 (0.90) 3.14 (0.98) 3.18 (0.80)

Affective engagement M (SD) 3.66 (0.94) 3.42 (1.04) 3.58 (0.85)
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F(2, 155) = 0.143, p = .867. Similarly, based on a series of one-way ANOVA, there
were no significant differences across conditions in achievement emotions, F(2, 156) =
0.118, p = .889, game engagement, F(2, 156) = 0.597, p = .552, or affective engage-
ment, F(2, 156) = 0.886, p = .414. In other words, there was no condition effect on
learning or self-reported enjoyment.

As students were able to make their own mini-game selections in all three condi-
tions, our measure of game play behavior is based on three factors: the number of mini-
game rounds that students played in each condition, the variety of mini-games played,
and the frequency of mini-game type switching. Because CC students could not replay
mini-games until after they had played 48 rounds, and were required to play two rounds
of mini-game per selection, their game play behavior measures were necessarily
different from those in LC and EC, so we focused our comparisons on the LC and
EC groups. First, a Kruskal-Wallis test showed significant differences between the two
conditions in the number of rounds where the LC students (M = 33.20, SD = 9.86)
played significantly more rounds than the EC students (M = 26.65, SD = 4.59),
p = .002. In short, the EC students tended to play fewer rounds of the mini-games
compared with students in LC.

Second, we defined a new metric for each student called replay rate, which is the
number of times a student reselected a mini-game beyond the first try divided by their
total number of mini-game selections. A high replay rate (close to 1) indicates that the
student played more rounds of the same mini-games, while a low rate (close to 0)
indicates the student played fewer rounds of more mini-games (i.e., playing a wider
variety of mini-games). We employed a Kruskal-Wallis test and observed significant
differences in replay rates between the LC and EC students, H = 42.41, p < .001; LC
students (M = 0.44, SD = 0.20) had a significantly higher replay rate than EC students
(M = 0.15, SD = 0.17). In other words, LC students tended to replay more rounds of the
mini-games they had already played than those in EC. Preliminary analysis of students’
reflections on their game play behavior revealed a similar picture. In their responses to
the post-game questionnaire item “How many mini-games did you play, and why did
you play this number of mini-games?”, many students in the EC group (25/54)
mentioned trying out every available mini-game, e.g., “I really wanted to finish the
whole map and see all the things filled in with color.” On the other hand, fewer LC
students (10/55) touched on this idea, while 17 of them instead mentioned the mastery
scores as motivation for playing, e.g., “I was trying to get all the decimal category skill
bars full.”

Third, we defined a new metric for each student called interleaving rate,
which is the number of times a student switched the mini-game type between
two consecutive mini-game selections, divided by the total number of times
they could have switched. A high interleaving rate (close to 1) indicates that
the student made more mini-game type switches, while a low rate (close to 0)
indicates the student played a particular mini-game type through multiple mini-
game rounds. A one-way ANOVA showed significant differences in interleav-
ing rate between the LC and EC group, F(1, 107) = 28.20, p < 0.001. LC
students (M = 0.46, SD = 0.20) had a significantly lower interleaving rate than
EC students (M = 0.66, SD = 0.19). In other words, students in EC tended to
interleave the game types while playing more than those in LC.
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Student Interaction with the Open Learner Model

To address our remaining two research questions, we first need to define the expected
behavior from the open learner or enjoyment model. As previously described, both
models encouraged more playing of specific game types by positioning these types at
the top of the dashboard. In the open learner model, the top game types involved
decimal operations for which the student was weakest; in the open enjoyment model,
the top game types were those the student enjoyed the most, based on their own mini-
game ratings. In addition, three mini-games were also recommended to the student at
each turn after the first three rounds, with the specific mini-games chosen randomly
from the top two game types. Therefore, we defined the behavior of following the
learner or enjoyment model as selecting a mini-game from the top two game types on
and after the fourth round. For each student, we then computed the model following
rate, which is the number of times this behavior occurred divided by the maximum
number of times it could have occured (i.e., the student’s total number of mini-game
rounds minus three). This metric reflects the frequency with which a student followed
the learner or enjoyment model’s recommendation in the course of their game play. The
mean and standard deviation of model following rate were M = 0.47, SD = 0.20 in the
Learning Condition (N = 55) andM = 0.46, SD = 0.16 in the Enjoyment Condition (N =
54). From a one-way ANOVA, we observed no significant difference in the model
following rate between conditions, F(1, 107) = 0.272, p = 0.603.

RQ2: In the Learning-oriented Condition, how is following the recommendation of
the open learner model associated with learning outcomes and enjoyment?

As the open learner model’s recommendations are based on the student’s in-game
learning measure (i.e., the plearn mastery values of the five game types), we wanted to
explore the relationship between following the model, in-game learning outcomes and
post-game learning outcomes, i.e., posttest and delayed posttest scores. For each
student, we measured in-game learning outcomes by looking at the final mastery values
of the five game types, by the time they stopped playing, and recording the minimum of
these values, i.e., the minimum final mastery. For example, one student’s final skill
mastery values for the five game types are 0.99 for Number Line, 0.99 for Addition,
0.84 for Sorting, 0.40 for Bucket, and 0.30 for Sequence. In this case, their minimum
final mastery would be the lowest of these five values, i.e., 0.30. Our rationale for this
metric is that a student who followed the open learner model more would get more
practice with their weak skills, and thus be able to raise their mastery in all five decimal
skills. Least mastered skill areas have also been used to measure overall progress in
cognitive tutors (Long & Aleven, 2017) and to guide curriculum reform (Cajimat et al.,
2020) in prior studies. Furthermore, as the posttest and delayed posttest covered all five
skills in roughly equal proportions, having a balanced mastery (corresponding to a high
minimum final mastery) was more beneficial than being strong in certain skills but
weak in others (corresponding to a low minimum final mastery).

Under this operationalization, we then conducted a mediation analysis with the
model following rate as an independent variable, minimum final mastery as a mediator,
and posttest/delayed posttest score as the dependent variable. Following the standard
practice of controlling for prior knowledge when analyzing posttest scores (Whitley &
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Kite, 2013), we also included pretest score as a covariate in the mediation model. The
indirect effect’s confidence interval was then estimated at the 5% significant threshold,
using bias-corrected non-parametric bootstrapping with 2000 iterations (Hayes &
Rockwood, 2017; Vallat, 2018). In case a mediation effect was present, we reported
its effect size through the ratio of the indirect to total effect, i.e., the mediation ratio,
which indicates the proportion of the total effect that is mediated (Preacher & Kelley,
2011).

Results of the mediation analysis showed that the effect of the model following rate
on posttest score was mediated by the minimum final mastery (Fig. 4). The regression
coefficient between the model following rate and minimum final mastery was signif-
icant, as was the regression coefficient between the minimum final mastery and posttest
score. Results of bootstrapping procedures also showed that the indirect effect was
significant (ab = 6.556, 95% CI [2.710, 12.782], p < .001), with a mediation ratio of
6.556 / 8.714 = 75.24%. Similarly, the relationship between the model following rate
and delayed posttest score was mediated by the minimum final mastery (ab = 6.866,
95% CI [2.597, 12.467], p < .001), with a mediation ratio of 6.345 / 6.866 = 92.41%. In
other words, following the open learner model more frequently led to better test
performance by supporting more balanced mastery of game content.

To better visualize the significant mediation effects, we constructed a scatter plot of
the independent, mediator and dependent variable in each model. Figure 5 shows that

Fig. 4 Diagram of mediation model for posttest score (top) and delayed posttest score (bottom). * indicates
significance at the .05 level
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students who followed the recommendations more frequently tended to attain higher
levels of minimum final mastery and have higher posttest scores, while students who
followed less frequently tended to attain lower levels of minimum final mastery and
have lower posttest scores.

We also examined the relationship between following the open learner model and
students’ post-game enjoyment ratings. As the learner model did not involve any
enjoyment-related information, we only conducted a Pearson correlation analysis to
see if, in this context, following the model was correlated with higher ratings in any
enjoyment construct. However, our results revealed no significant correlation between
students’model following rates and their affective engagement (r = .07, p = .594), game
engagement (r = .03, p = .809) or achievement emotion ratings (r = .02, p = .884).

Student Interaction with the Open Enjoyment Model

RQ3: In the Enjoyment-oriented Condition, how is following the open enjoyment
model associated with learning outcomes and enjoyment?

As the open enjoyment model’s recommendations are based on the student’s in-game
enjoyment (i.e., the mini-game ratings from the fun-o-meter in Fig. 3), we wanted to
explore the relationship between following the model, in-game enjoyment and post-
game enjoyment rating in each enjoyment construct. For each student, we measured in-
game enjoyment by looking at the average of all mini-game ratings that they provided
in the course of game play. Our rationale for this metric is that a student who followed
the open enjoyment model more frequently would play more mini-games in the types
that they enjoyed the most and, in turn, assigned higher ratings to those mini-games,
leading to a higher average mini-game rating overall.

Under this operationalization, we then conducted a mediation analysis with the
model following rate as an independent variable, average mini-game rating as a
mediator, and post-game enjoyment rating as the dependent variable. The resulting

Fig. 5 Scatter plot of the relationship between the following rate and posttest score (left) and delayed posttest
score (right)
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models indicated no significant mediation effect of average mini-game ratings in
the relationship between the model following rate and affective engagement (ab =
0.051, 95% CI [−0.334, 0.715], p = .753), game engagement (ab = 0.090, 95% CI
[−0.652, 0.922], p = .782) or achievement emotion rating (ab = 0.089, 95% CI
[−0.782, 0.770], p = .782). In each dimension, the total effect, without accounting
for the mediator, was likewise not significant: c = 1.028, p = .265 for affective
engagement; c = −1.261, p = .146 for game engagement; c = −0.385, p = .626 for
achievement emotion.

We also examined the relationship between following the open enjoyment model
and post-game learning performance, based on posttest and delayed posttest scores. As
the enjoyment model did not involve any learning-related information, we only con-
ducted a Pearson correlation analysis with pretest scores as covariates to see if, in this
context, following the open enjoyment model was correlated with higher test scores.
However, our results revealed no significant correlation between students’ model
following rates and their posttest scores (r = .03, p = .824) or delayed posttest scores
(r = .14, p = .319).

To better understand why the mediation effect was not present, we looked at
the distribution of individual mini-game ratings, which the open enjoyment
model relied on, in order to rank the game types. For each mini-game selected
by a student, we recorded whether it was from their top two game types at the
time of selection, and how they rated it after playing (from 1 to 5 stars). Based
on Fig. 6, we found that the majority of ratings (about 60%) were 5-star
ratings, regardless of whether the selected game was among the top two types
or not. In other words, students were very likely to provide a maximum rating
to any mini-game they played; consequently, their average mini-game ratings
were heavily skewed towards the higher end, which explains why this metric
did not yield a significant mediation effect.

Fig. 6 Stacked bar chart of mini-game ratings for the mini-games in the top two game types at the time of
selection and for those not in the top two game types
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Discussion

In this study, we investigated the impact of emphasizing the learning or enjoyment
aspect of the digital learning game Decimal Point through a comparison of three game
versions: the Enjoyment-oriented Condition (EC), the Learning-oriented Condition
(LC) and the Control Condition (CC). Our analysis was motivated by whether opti-
mizing for enjoyment would positively or negatively impact learning in a digital
learning game, given that enjoyment is often posed as a trade-off to learning (Greipl
et al., 2018), but can also be a conducive factor that supports learning by increasing
engagement with the instructional content of the game (Giannakos, 2013; Richey et al.,
under review). This topic is especially relevant for in-class studies, where students’
sense of enjoyment may be lacking due to the classroom environment and teacher
expectations (Squire, 2005). Beyond broad intervention impacts, we also examined
how students interacted with the open models, i.e., whether they used the provided
information to make game play decisions that were beneficial to their learning or
enjoyment. In turn, we aimed to derive actionable insights on the strengths and
weaknesses of the current dashboard designs.

Overall, results from our study indicated that there were no condition differences in
post-game test performance or enjoyment scores between the three conditions. There
were, however, differences in game play patterns, where EC students had the least
number of mini-game rounds and significantly lower replay rates than LC students. In
addition, while students in EC and LC followed the open models’ recommendations at
similar rates (about 50% of the times), following the open learner model led to better in-
game learning and post-game performance, while following the open enjoyment model
did not.

Condition Effect on Learning and Enjoyment

From the learning perspective, the EC students, who did not have access to the open
learner model, may not have closely monitored their learning progress (Bull & Kay,
2008; Zimmerman, 2000) and more likely wanted to explore all the mini-games offered
in Decimal Point. In contrast, the LC students could see their skill performance and
therefore were potentially more motivated to focus on mastering all of the skills, as
reflected in their replay and interleaving rates. Further evidence is provided by students’
post-game reflections, which indicated that the EC students liked to play all the mini-
games to “see all the things filled with colors,” while the LC students wanted to
improve their skill masteries to “get all the decimal category skill bars full”; of
particular note is how students referred to interface elements in the enjoyment- and
learning-oriented dashboards as motivation for their game play behavior. More gener-
ally, our finding suggests that in a game environment where students have the agency
to choose between different types of tasks, showing an open learner model can
encourage re-practicing tasks, while showing an open enjoyment model may prompt
students to engage in more exploration of the different tasks.

To discuss the learning implications of these two game play patterns, we would
draw a connection between them and the concept of interleaved practice, in which
exposure to learning contexts (e.g., mini-game types) are interleaved, so that consec-
utive questions belong to different contexts (Rohrer, 2012). Compared with the LC
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group, students in the EC group engaged in more interleaving at both the mini-game
level (based on their replay rates) and the game type level (based on their interleaving
rates). On the other hand, the LC group, who had lower interleaving rates, were
potentially engaging in blocked practice, i.e., finishing all of the mini-games of one
game type before moving to the next. There has been a rich literature on the benefits of
interleaved practice in mathematics learning, especially when compared with blocked
practice (Foster et al., 2019; Maass et al., 2015; Patel et al., 2016). However, results
from our study indicated that the EC group, who demonstrated more interleaving, did
not learn more than the LC group. One potential reason, as pointed out by Carvalho and
Goldstone (2019), is that the effect of interleaved practice can be influenced by many
factors such as students’ skill level, age, and study times. Therefore, future studies that
directly manipulate the levels of interleaving for students are needed to derive a more
definitive finding about the boundary conditions of the interleaving effect (Carpenter,
2014).

From the enjoyment perspective, our EC design did not yield the intended effect of
maximizing students’ enjoyment and engaging them in the game for a longer time,
compared to LC and CC. In fact, the EC students played the least number of rounds
(M = 26.65, SD = 4.59) and had a low replay rate (M = 0.15, SD = 0.17), indicating that
they chose to stop playing after trying most of the 24 unique mini-games once. One
potential reason is that, as suggested by Lomas et al. (2017), novelty is among the
primary predictors of engagement in digital learning games. EC students were able to
experience all of the mini-games sooner due to their exploration behavior, and by this
point, there was no other novelty factor to keep them playing. The low replay rate in the
EC condition suggests students did not perceive the games to be enjoyably replayable,
which could discourage them from replaying game types as much as they needed to
master skills. In addition, our study was conducted in a real classroom environment,
where students had limited time per day to play the game and were aware of the
posttests; these factors may have negated the playful atmosphere that the Enjoyment-
oriented condition was intended to induce (Osman & Bakar, 2012; Rice, 2007) or
caused students not to take the enjoyment model as seriously as the learner model.
Incorporating survey questions that ask students about how they used the open models
would allow us to validate this conjecture.

Student Interaction with the Open Learner Model

A key result in the Learning-oriented Condition is that students who more assiduously
followed the open learner model acquired a higher skill floor across all the decimal
operations targeted by the five game types, as indicated by their minimum final skill
mastery, which in turn led to higher posttest and delayed posttest scores. Furthermore,
with the help of the dashboard, students in the Learning-oriented Condition were able
to identify and practice with the mini-games that corresponded to their two weakest
decimal skills quite frequently, at an average rate of 47%. While self-regulated learning
(SRL) has been a driving factor in the adoption of open learner models, which aim to
encourage students to take control of their learning and, in particular, encourage them
to practice their least-mastered skills, it has been unclear whether this theory holds in
the context of digital learning games, where students’ sense of agency (Reeve et al.,
2003), contextual autonomy (Deterding, 2016) and expectation (Wardrip-Fruin et al.,
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2009) all play a crucial role in shaping their experience. In particular, if students feel
that their game choices are not meaningful, or that their engagement with the game is
mediated by external factors such as teacher control, their motivation to engage in
behavioral regulation may be diminished. Therefore, our results are novel in their
implication that the self-regulation support from an open learner model can indeed be
beneficial in a learning game environment such as Decimal Point.

The follow-up question, then, is which factors may lead to the open learner model’s
effectiveness in Decimal Point. Our conjecture is that the game’s relatively simple
design and clear objective (i.e., help the alien friends learn about decimal numbers)
were helpful in aligning the student’s expectation with the game activities from the
beginning of game play. Furthermore, from the perspective of self-determination theory
(Przybylski et al., 2010), Decimal Point promotes both autonomy (students can choose
which mini-games to play and when to stop) and perceived competence (through the
open learner model’s display of skill mastery values), which are two primary factors in
fostering intrinsic motivation. In addition, the game’s feedback, including the immedi-
ate corrective feedback when students solve mini-game problems and the skill meter
animation (i.e., gradually increasing or decreasing) after each mini-game, also consti-
tutes a strong support for perceived competence (Deci et al., 1991). Perceptions of
competence and control may increase students’ preference for challenge (Boggiano
et al., 1988), which in this version of the game were clearly indicated through the open
learner model recommendation system.

On the other hand, we did not observe any significant correlation between students
following the model and their post-game enjoyment, in terms of affective engagement,
game engagement or achievement emotion. While we expected students to enjoy
games that involved more challenging decimal skills to them, such as those for which
they attained lower mastery, prior evidence suggests that this is only the case if they
feel like their engagement is voluntary and view it more as play than as work
(Abuhamdeh & Csikszentmihalyi, 2012). In our case, students’ perceptions of Decimal
Point likely fell somewhere between play and work, because the game was played as a
required in-class activity. Thus, future research could examine whetherDecimal Point’s
open learner model might lead to greater enjoyment in a different context, e.g., leisurely
play, that students would perceive as more entertaining. Additionally, comparing
students’ behaviors, as well as learning and enjoyment outcomes, in Decimal Point
to a non-game system (i.e., a computer tutor with the same math content, but presented
in a standard, non-game manner) with the same open learner model would provide
valuable insight into how an open learner model might function differently in a game
versus non-game setting.

Moving forward, one potential direction for improving the learner model’s effec-
tiveness is to make its recommendations more pronounced. In particular, we could
display an explanation of why certain mini-games were recommended (i.e., because the
student needed more practice on them) to better convey the model’s rationale and allow
students to make more informed decisions. This type of explanation has been shown to
increase user acceptance across many recommender systems (Adomavicius & Tuzhilin,
2005; Herlocker et al., 2000; Papadimitriou et al., 2012; Tintarev &Masthoff, 2011). In
addition, adding more measures of achievement orientation (Elliot & Murayama, 2008)
and self-regulated learning measures (Usher & Pajares, 2008) could help clarify
whether this kind of open learner model has a positive impact on students’ mastery
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orientations and beliefs of self-directed learning. Furthermore, the current learner
dashboard design is a suitable platform for implementing the mastery-oriented features
from the algebra tutor Lynnette (Long & Aleven, 2016), which provide explicit
feedback on whether a student’s problem selection choice was good or bad. As Long
and Aleven have reported that these features led to more learning than a tutor version
with full system control over problem sequencing, it would also be meaningful to
replicate this effect in future studies of Decimal Point.

Student Interaction with the Open Enjoyment Model

In the Enjoyment-oriented condition, the open enjoyment model asked students to
report their enjoyment rating for each mini-game round, then averaged these ratings by
game types and placed the types with the highest average scores on top. We based this
design decision on the assumption that playing more of the game types that students
liked the most would increase their engagement (Harpstead et al., 2015; Van der
Heijden, 2004). Furthermore, encouraging students to make decisions based on their
own enjoyment rather than external rewards can also be seen as a form of intrinsic
motivation support (Ryan & Deci, 2000). However, we found that following the open
enjoyment model did not lead to higher post-game enjoyment or correlate with posttest
and delayed posttest performance. This outcome was likely due to the mini-game
ratings, which the enjoyment model relied on for ranking the game types, being heavily
skewed towards the maximum rating of 5 stars across all mini-games. It may also be
that explicitly drawing attention to enjoyment through ratings and visualizations
disrupted the game environment and decreased enjoyment, thereby negating any
enjoyment benefits students might have experienced by playing their preferred games.

This biased rating trend could be due to either the game interface or the classroom
environment. While the fun-o-meter (Fig. 3) did provide some rating guidelines (i.e., 1
star means “not fun” and 5 stars mean “crazy fun”), these suggestions were likely
insufficient in helping students discern their level of enjoyment. Furthermore, prior
research has indicated a positive bias tendency in the five-star rating systems (Hu et al.,
2009; Zervas et al., 2021). Providing a social contribution context for student reviews,
such as telling students that their ratings will be used by other learners to make game
play decisions, could motivate students to provide more varied ratings. In addition, the
classroom setting where Decimal Point was deployed may cause students to view the
game as an alternative to typical classwork. In this case, the mini-games were likely
more engaging than textbook exercises and therefore earned their high ratings. To get a
better sense of whether Decimal Point was inherently enjoyable, we should examine
students’ ratings as they played in their free time, when their expectation for game
enjoyment would likely be higher than in the classroom.

Prior studies on the use of fun-o-meters have found that, while children tended to
provide the maximum rating in most cases, there is a trend of older children being more
discriminating in their ratings (Read et al., 2002; Read & MacFarlane, 2006). When
comparing the age range and response variability of the participants in these studies and
ours, we noted that our results are consistent with the reported trend. However, the
students’ ratings are still not diverse enough to serve as useful input to an adaptive
recommender system, such as the open enjoyment model dashboard. Therefore, to
enhance the open enjoyment model, the input bias from the fun-o-meter should be
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reduced, either by showing students their previous ratings as a reference to support joint
evaluation (Mussweiler, 2003), or by adopting more evidence-based enjoyment ques-
tionnaires (Mekler et al., 2014).

Relationship to Digital Learning Game Research

Our results open up several directions of future research in learning game design. First,
consistent with Chen et al. (2007), we have shown that incorporating an open learner
model in the game is beneficial to student learning. While it could be argued that
displaying the learning-related metrics would diminish the game’s immersiveness and,
in turn, enjoyability, this effect was not observed in Decimal Point – the LC students
reported a similar level of enjoyment as those in EC and CC. The fact that learning can
be optimized, through an open learner model and recommendation system, without
sacrificing enjoyment is particularly encouraging, and would merit additional valida-
tion in other learning game studies.

Another motivating question for our study is whether enjoyment can also be
optimized without undermining learning. We again saw that the EC students who
interacted with this model did not learn less than those in LC or CC. An important
nuance here is that, while the open learner model approach is based on metacognitive
theories of self-regulated learning (Bull & Kay, 2010; Nussbaumer et al., 2014) and has
been validated by numerous empirical studies (Bodily et al., 2018), the concept of an
open enjoyment model is quite novel. To maintain a fair comparison between study
conditions, we have set up an analogous open enjoyment model that uses the students’
in-game ratings as a representation of their enjoyment. However, a feasible interpreta-
tion of our results is that learning (i.e., long-term reusable conceptions) and enjoyment
(i.e., momentary affective state) are very distinct constructs and should be represented
differently, rather than analogously. In its current state, the open enjoyment model’s
main functionality was to guide students towards the game types they presumably
enjoyed the most, rather than to expose students to their own enjoyment state. In other
words, the exact dimensions of how students interpret open models of their own
enjoyment, and how such a model should be designed, remains a rich area for future
work.

It is also possible that the learning-oriented or enjoyment-oriented recommender
system should also take into account individual student characteristics that may lead to
different play styles. For instance, there is a rich literature on player type models that
are used in personalizing games towards individual player preferences (e.g., Bateman
et al., 2011; Busch et al., 2015; Hamari & Tuunanen, 2014). Decimal Point, however,
offers a fairly structured game experience, where students select from five game types
to play, and the mini-game contents are identical across conditions. Prior work has
shown that mini-game selection sequences did not impact learning or enjoyment
(Harpstead et al., 2019; Wang et al., 2019), and therefore player types are likely not
manifesting in the mini-game selection mechanic. Instead, we can investigate traits that
may influence players’ overall reception of the game, such as desired challenge level
and aesthetic orientation (Tondello & Nacke, 2019). Identifying these traits and
incorporating them in the game’s recommendations is a promising next step.

Finally, our work also has implications for the design of COTS (commercial off the
shelf) games. Many COTS games have systems that drive players toward challenging,
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rather than entertaining, tasks. For example, the game Cut the Rope (Cut the Rope,
2010) has three stars located in each game level. To finish the level, the player only
needs to collect one star. However, the level selection screen shows whether the player
has collected one, two, or three stars on each level. The player is incentivized to go
back and replay the most challenging levels (e.g. where they have not yet figured out
how to obtain three stars), because their total number of stars allows them to unlock
new challenges. Our findings suggest that this design may drive incidental physics
learning, such as that documented by (Croxton & Kortemeyer, 2017). Incorporating a
similar star system in Decimal Point could increase perceived replayability by encour-
aging students to pursue three star ratings by, for example, completing a problem
without any errors. In contrast, game design patterns such as grinding (Zagal et al.,
2013) may be detrimental to incidental learning in COTS games. Grinding asks players
to repeatedly complete a task, in order to accumulate rewards over time. For example,
in World of Warcraft, a player might be tasked with collecting twenty copies of the
same object, or killing a certain type of enemy ten times. While grind-based designs do
not explicitly drive players toward their favorite tasks, players work together to find the
easiest and most pleasurable way to complete them (Steinkuehler & Duncan, 2008). In
other words, our work provides an analytic framework for subtask selection in COTS
games that can be empirically evaluated in future studies.

Relationship to AI in Education Research

While the primary AI component of Decimal Point is the standard BKT algorithm that
supports the open learner model’s recommendations, there are several future opportu-
nities to incorporate more advanced features from state-of-the-art learning analytics
dashboards and recommender systems (Bodily & Verbert, 2017). In the Learning-
oriented condition, we could construct more personalized learner models by applying
advanced BKT algorithms that take into account differences in both skill types and
individual learners (Eagle et al., 2016; Yudelson et al., 2013). The student-facing
dashboards could also be enhanced with other students’ data, allowing them to provide
adaptive navigation functionality and social comparison support (Guerra et al., 2016).
This kind of open social model (Brusilovsky et al., 2011) has also been shown to foster
the relatedness component of self-determination theory (Deci et al., 1991), resulting in
higher intrinsic motivation, which might in turn lead to greater enjoyment from
challenging problems.

Similarly, in the Enjoyment-oriented condition, instead of asking students to
self-report their mini-game ratings, we could build automated affect detectors that
can infer a wide range of affective states within Decimal Point, based on past
student data (Baker et al., 2012; Botelho et al., 2017; DeFalco et al., 2018;
Paquette et al., 2014). In particular, we would distill meaningful features of
student interaction from the log files, synchronize the features to field observa-
tions of student affect, and use data mining to determine which features of the log
files are associated with field observations of each affective state. Results from
these analyses would inform our understanding of how students interact with
different features of the game and how their affective states change over the
gameplay. These insights would in turn contribute to an affect-sensitive intelligent
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interface that can provide real-time recommendations to help students maximize
their enjoyment and potentially learning (Bosch et al., 2015).

At the same time, we should note that the effectiveness of AI in education depends
not only on the underlying AI techniques, but also on how students perceive and make
use of the AI decisions made by the software (Cruz-Benito et al., 2019). The contri-
bution of our work lies largely in the second area, where we have derived key insights
on student interaction with the open learner and enjoyment models. In particular, we
found that students have been receptive to the novel integration of these models in a
learning game context, thus opening up the possibility that AI-enhanced open learner
and enjoyment models would also be well received. Through presenting the skill
mastery values and highlighting the skills that need more practice, the open learner
model had the effect of prompting students to focus on their weakest skills, and
following the model more frequently led to better learning. In contrast, by displaying
students’ mini-game ratings and encouraging more playing of the student’s most
favored game types, the open enjoyment model was oriented towards trying out
different mini-games; however, the intended effect of promoting higher enjoyment
was not present, due to the biased input ratings from young students. These are helpful
lessons in human-AI interaction that are applicable to many other learning platforms,
regardless of how sophisticated the underlying AI system may be.

Finally, we also acknowledge that student-AI interactions, especially in digital
learning games, are inherently complex and multi-faceted. To further support the
finding that following the open learner model more frequently leads to better
learning, an important next step is to conduct a randomized control experiment
that aims at testing this effect directly. In particular, we could adopt the experi-
mental design of Lynnette, with a full player control condition (identical to the
current Learning condition) and a joint player system control condition, where
players can only select the mini-games from the top two game types. This design
would directly manipulate whether or not players adhered to the open learner
model by removing the reliance on their choosing to follow the recommendations.
We will also complement our analyses on student-AI interaction with more
concrete survey questions to capture students’ thoughts about their interaction
with adaptive dashboards on the whole.

Conclusion

In this work, we investigated the effects of a learning-oriented and enjoyment-
oriented version of a digital learning game. We found that these versions yielded
two distinct gameplay patterns, one focusing more on repeated practice (the
Learning-oriented Condition) and the other on exploration (the Enjoyment-
oriented Condition). Further analyses of student interaction with the open learner
and enjoyment models demonstrated that following the open learner model,
despite its relatively simple design, did help improve students’ in-game learning
and test performance. On the other hand, students who had access to the open
enjoyment model did not report more enjoyment than those without. In turn, these
results also raise important points about the human factors in AIED that should be
considered when adopting intelligent technologies. Moving forward, we plan to
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enhance the existing models in terms of both assessment and functionality to
amplify their potential impacts. We also encourage opening up student assessment
models in digital learning games to better support students’ decision making and
to promote a deeper mutual human-system understanding.
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